login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151478
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, -1), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 1)}.
0
1, 1, 4, 12, 54, 210, 1020, 4445, 22610, 105210, 551376, 2678676, 14332164, 71788860, 389991888, 1998530820, 10984120290, 57293297490, 317798892840, 1681213457352, 9395215622364, 50278804820244, 282711201927336, 1527524202392370, 8633634028624332, 47028406025950300, 266981514041485600
OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008.
FORMULA
G.f.: Int(Int(((3-6*x)*hypergeom([1/2,3/2],[1],16*x/(12*x^2+8*x+1))+(6*x-1)*hypergeom([1/2,3/2],[2],16*x/(12*x^2+8*x+1)))/(12*x^2+8*x+1)^(3/2),x),x)/x^2. - Mark van Hoeij, Aug 25 2014
a(n) = A001006(n) * binomial(n,floor(n/2)). - Benedict W. J. Irwin, Oct 14 2016
MAPLE
seq(binomial(n, floor(n/2))*add(n!/((n-2*k)!*k!*(k+1)!), k=0..floor(n/2)), n=0..26); # Mark van Hoeij, May 12 2013
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
CROSSREFS
Cf. A001006 (Motzkin numbers).
Sequence in context: A149415 A149416 A149417 * A125528 A124005 A149418
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved