The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151472 Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, -1), (-1, 0), (0, -1), (0, 1), (1, -1), (1, 0)}. 0

%I #11 Dec 04 2016 13:57:03

%S 1,1,3,9,30,110,423,1687,6984,29574,128074,564652,2527292,11463972,

%T 52602015,243824807,1140448152,5377337150,25539196048,122093592944,

%U 587170555168,2839207157456,13797304069674,67357039620092,330225541717108,1625329978935340,8028874036140468,39796190100237612

%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, -1), (-1, 0), (0, -1), (0, 1), (1, -1), (1, 0)}.

%H M. Bousquet-Mélou and M. Mishna, <a href="http://arxiv.org/abs/0810.4387">Walks with small steps in the quarter plane</a>, ArXiv 0810.4387 [math.CO], 2008.

%F G.f.: Int(Int(Int(x*(-36-2*Int((1-4*x-12*x^2)^(3/2)*((256*x^5+416*x^4+128*x^3+3*x+3)*hypergeom([5/4, 7/4],[1],64*x^3*(2*x+1)/(8*x^2-1)^2)-7*x*(40*x^4+68*x^3-4*x^2-18*x-3)*hypergeom([5/4, 11/4],[2],64*x^3*(2*x+1)/(8*x^2-1)^2))/((2*x+1)*(1-8*x^2)^(7/2)*x^2),x))/(1-4*x-12*x^2)^(5/2),x),x),x)/x^3. - _Mark van Hoeij_, Aug 27 2014

%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]

%K nonn,walk

%O 0,3

%A _Manuel Kauers_, Nov 18 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 22:09 EDT 2024. Contains 372782 sequences. (Running on oeis4.)