login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151464
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, 0)}.
1
1, 1, 4, 12, 46, 180, 745, 3185, 14000, 62832, 287154, 1331484, 6251916, 29671356, 142132848, 686420592, 3338939032, 16345771728, 80480627656, 398307700648, 1980504505408, 9889617286848, 49575852422122, 249406833948012, 1258841279547604, 6373077654620340, 32355358786303440, 164693131263424560
OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
FORMULA
G.f.: ((1+1/x)*Int(((8*x^2+4*x+1)*hypergeom([1/4, 3/4],[1],64*x^3*(2*x+1)/(8*x^2-1)^2)-12*x^2*(2*x+1)*hypergeom([1/4, 3/4],[2],64*x^3*(2*x+1)/(8*x^2-1)^2))/((x+1)^2*(1-8*x^2)^(3/2)),x)-1)/(2*x). - Mark van Hoeij, Aug 20 2014
MAPLE
M[0]:= Matrix(1, 1, 1):
for i from 1 to 100 do
M[i]:= Matrix(i+1, i+1);
for p in [[-1, -1], [-1, 0], [-1, 1], [0, -1], [0, 1], [1, 0]] do
j1:= max(1, 1+p[1]); j2:= max(1, 1+p[2]);
if j1 <= p[1]+i and j2 <= p[2]+i then
M[i][j1..p[1]+i, j2..p[2]+i] := M[i][j1..p[1]+i, j2..p[2]+i]
+ M[i-1][j1-p[1]..i, j2-p[2]..i]
fi
od
od:
seq(add(M[i][1, j], j=1..i+1), i=0..100); # Robert Israel, Aug 20 2014
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A126202 A149373 A259203 * A101225 A000775 A149374
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved