%I #7 Mar 10 2022 20:54:03
%S 1,1,4,13,46,178,699,2826,11665,48877,207426,889753,3850726,16792923,
%T 73721417,325516893,1444683024,6440892041,28832816045,129544987197,
%U 583978531063,2640502004594,11972283977009,54421442961369,247958522736954,1132210929270549,5180203300927992,23745237667125709
%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, 0), (-1, 1), (0, -1), (0, 1), (1, 1)}.
%H M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, <a href="http://arxiv.org/abs/0810.4387">ArXiv 0810.4387</a>.
%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008