login
A151406
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, 0), (0, -1), (1, -1), (1, 1)}.
0
1, 0, 1, 2, 4, 8, 31, 74, 180, 598, 1834, 4788, 14996, 49482, 143789, 435354, 1453804, 4561596, 13938918, 45872900, 150436644, 473005586, 1538113866, 5131580610, 16631971200, 54060256628, 180817311524, 599398780812, 1965766211768, 6566285301920, 22047832597671, 73217323048944, 244741654013110
OFFSET
0,4
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A326330 A018355 A100083 * A307611 A053147 A128055
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved