%I #7 Dec 27 2023 21:31:19
%S 1,1,1,2,6,12,25,77,215,511,1466,4610,12680,35579,113158,344542,
%T 997244,3112862,9956308,30277199,93800266,303919846,963863561,
%U 3017836845,9766363338,31766793517,101462348434,328277090248,1079653283803,3516292489624,11439613075930,37768544363774,124746380740174
%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, -1), (-1, 0), (0, 1), (1, -1)}.
%H M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, <a href="http://arxiv.org/abs/0810.4387">ArXiv 0810.4387</a>.
%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
%K nonn,walk
%O 0,4
%A _Manuel Kauers_, Nov 18 2008