login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 0), (0, 1), (1, -1), (1, 0)}.
0

%I #15 May 11 2020 09:43:59

%S 1,0,1,3,4,20,65,175,742,2604,9072,36960,139392,538824,2198625,

%T 8735727,35456850,146812952,604215326,2521642266,10617725768,

%U 44760668160,190357768328,813800295880,3490232753680,15055389124320,65193213272800,283254330047520,1235731377864960,5407996483238160

%N Number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 0), (0, 1), (1, -1), (1, 0)}.

%H M. Bousquet-Mélou and M. Mishna, <a href="http://arxiv.org/abs/0810.4387">Walks with small steps in the quarter plane</a>, arXiv:0810.4387 [math.CO], 2008-2009.

%F G.f.: Int(Int(2*hypergeom([3/4,5/4],[2],64*t^3*(t+1)/(1-4*t^2)^2)/(1-4*t^2)^(3/2),t),t)/t^2. - _Mark van Hoeij_, Aug 14 2014

%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, n], {n, 0, 25}]

%K nonn,walk

%O 0,4

%A _Manuel Kauers_, Nov 18 2008