login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A151309
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 0), (0, -1), (1, -1), (1, 0), (1, 1)}
0
1, 2, 9, 35, 160, 720, 3413, 16220, 78941, 386168, 1913966, 9534469, 47882879, 241540800, 1225176455, 6237701908, 31886453967, 163506199839, 841042932257, 4337370857108, 22424551961962, 116189867455606, 603271009373456, 3138073094395283, 16352089769050877, 85344855526327286, 446101304547583159
OFFSET
0,2
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A150954 A150955 A150956 * A150957 A150958 A150959
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved