login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 0), (1, 0), (1, 1)}.
10

%I #51 Aug 06 2024 04:46:54

%S 1,2,6,16,48,136,408,1184,3552,10432,31296,92544,277632,824448,

%T 2473344,7365120,22095360,65920000,197760000,590790656,1772371968,

%U 5299916800,15899750400,47578857472,142736572416,427357700096,1282073100288,3840133464064,11520400392192,34517383151616,103552149454848

%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 0), (1, 0), (1, 1)}.

%C From _Paul Barry_, Jan 26 2009: (Start)

%C Image of 2^n under A155761. Binomial transform is A129637. Hankel transform is 2^C(n+1,2).

%C In general, the g.f. of the reversion of x*(1+c*x)/(1+a*x+b*x^2) is given by the continued fraction x/(1 -(a-c)*x -(b-a*c+c^2)*x^2/(1 -(a-2*c)*x -(b-a*c+c^2)*x^2/(1 -(a-2*c)*x -(b-a*c+c^2)*x^2/(1 - .... (End)

%C a(n) is the number of nondeterministic Dyck meanders of length n. See A368164 or the de Panafieu-Wallner article for the definiton of nondeterministc walks. A nondeterministic meander contains at least one classical meander, i.e., a walk never crossing the x-axis. - _Michael Wallner_, Dec 18 2023

%H Robert Israel, <a href="/A151281/b151281.txt">Table of n, a(n) for n = 0..2000</a>

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Barry2/barry73.html">A Note on a One-Parameter Family of Catalan-Like Numbers</a>, JIS 12 (2009) 09.5.4

%H A. Bostan, <a href="https://citeseerx.ist.psu.edu/pdf/749aef4c6f3668e652b5074e5268346ccecc88c9">Computer Algebra for Lattice Path Combinatorics</a>, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.

%H A. Bostan and M. Kauers, <a href="http://arxiv.org/abs/0811.2899">Automatic Classification of Restricted Lattice Walks</a>, arXiv:0811.2899 [math.CO], 2008-2009.

%H Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, <a href="https://arxiv.org/abs/2001.00393">Stieltjes moment sequences for pattern-avoiding permutations</a>, arXiv:2001.00393 [math.CO], 2020.

%H M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, <a href="http://arxiv.org/abs/0810.4387">ArXiv 0810.4387</a>.

%H Elie De Panafieu, Mohamed Lamine Lamali, and Michael Wallner, <a href="https://arxiv.org/abs/1812.06650">Combinatorics of nondeterministic walks of the Dyck and Motzkin type</a>, arXiv:1812.06650 [math.CO], 2018.

%H Élie de Panafieu and Michael Wallner, <a href="https://arxiv.org/abs/2311.03234">Combinatorics of nondeterministic walks</a>, arXiv:2311.03234 [math.CO], 2023.

%F From _Paul Barry_, Jan 26 2009: (Start)

%F G.f.: 1/(1 -2*x -2*x^2/(1 -2*x^2/(1 -2*x^2/(1 -2*x^2/(1 -2*x^2/(1 - .... (continued fraction).

%F G.f.: c(2*x^2)/(1-2*x*c(2*x^2)) = (sqrt(1-8*x^2) + 4*x - 1)/(4*x*(1-3*x)).

%F a(n) = Sum_{k=0..n} ((k+1)/(n+k+1))*C(n, (n-k)/2)*(1 +(-1)^(n-k))*2^((n-k)/2)*2^k.

%F Reversion of x*(1 + 2*x)/(1 + 4*x + 6*x^2). (End)

%F From _Philippe Deléham_, Feb 01 2009: (Start)

%F a(n) = Sum_{k=0..n} A120730(n,k)*2^k.

%F a(2*n+2) = 3*a(2*n+1), a(2*n+1) = 3*a(2*n) - 2^n*A000108(n).

%F a(2*n+1) = 3*a(2*n) - A151374(n). (End)

%F (n+1)*a(n) = 3*(n+1)*a(n-1) + 8*(n-2)*a(n-2) - 24*(n-2)*a(n-3). - _R. J. Mathar_, Nov 26 2012

%F a(n) ~ 3^n/2. - _Vaclav Kotesovec_, Feb 13 2014

%p N:= 1000: # to get terms up to a(N)

%p S:= series((sqrt(1-8*x^2)+4*x-1)/(4*x*(1-3*x)),x,N+1):

%p seq(coeff(S,x,j),j=0..N); # _Robert Israel_, Feb 18 2013

%t aux[i_, j_, n_] := Which[Min[i, j, n]<0 || Max[i, j]>n, 0, n==0, KroneckerDelta[i, j, n], True, aux[i, j, n]= aux[-1+i, -1+j, -1+n] +aux[-1+i, j, -1+n] +aux[1+i, j, -1+n]]; Table[Sum[aux[i,j,n], {i,0,n}, {j,0,n}], {n,0,25}]

%t a[n_]:= a[n]= If[n<3, (n+1)!, (3*(n+1)*a[n-1] +8*(n-2)*a[n-2] -24*(n-2)*a[n-3])/(n+1)]; Table[a[n], {n, 0, 30}] (* _G. C. Greubel_, Nov 09 2022 *)

%o (Magma) [n le 3 select Factorial(n) else (3*n*Self(n-1) + 8*(n-3)*Self(n-2) - 24*(n-3)*Self(n-3))/n: n in [1..41]]; // _G. C. Greubel_, Nov 09 2022

%o (SageMath)

%o def a(n): # a = A151281

%o if (n==0): return 1

%o elif (n%2==1): return 3*a(n-1) - 2^((n-1)/2)*catalan_number((n-1)/2)

%o else: return 3*a(n-1)

%o [a(n) for n in (0..40)] # _G. C. Greubel_, Nov 09 2022

%Y Cf. A000108, A120730, A129637, A151374, A155761.

%Y Cf. A368164 (nondeterministic Dyck bridges), A368234 (nondeterministic Dyck excursions).

%K nonn,walk

%O 0,2

%A _Manuel Kauers_, Nov 18 2008