login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151261
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 1), (-1, 0), (1, 0)}.
0
1, 1, 3, 5, 17, 34, 121, 265, 969, 2246, 8351, 20118, 75676, 187524, 711369, 1801161, 6876749, 17710990, 67962103, 177474154, 683797608, 1806245948, 6982719679, 18624035846, 72200420096, 194169343564, 754537816956, 2043762871460, 7958294450084, 21691396049160, 84615387463873, 231907336128537
OFFSET
0,3
LINKS
A. Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.
Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d’Informatique de Paris Nord, Université Paris 13, December 2017.
A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2008-2009.
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
FORMULA
G.f.: (1-2*x)*(1+(-1+2*Int(((1-24*x^3)*hypergeom([1/2, 3/2],[2],16*x^2/(1+4*x^2))+18*x^2*(2*x-1)*hypergeom([1/2, 5/2],[3],16*x^2/(1+4*x^2)))/((1-4*x)^(1/2)*(1-2*x)^2*(1+4*x^2)^(1/2)),x))/(1-4*x)^(1/2))/(4*x^2). - Mark van Hoeij, Aug 16 2014
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A056816 A156761 A371927 * A148504 A148505 A148506
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved