login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A151197
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (0, 0, 1), (0, 1, 0), (1, 1, -1), (1, 1, 1)}.
0
1, 3, 12, 52, 238, 1115, 5313, 25582, 124147, 605854, 2969417, 14601804, 71990585, 355671293, 1760174880, 8722964916, 43278373590, 214928743357, 1068241681155, 5313039611577, 26440634886864, 131649846629066, 655781098819477, 3267854654023179, 16289622505803944, 81224322390209525
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A151196 A363090 A010736 * A007198 A348479 A000256
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved