Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Apr 21 2024 22:21:05
%S 1,3,10,41,173,759,3406,15618,72354,338120,1594023,7562099,36031901,
%T 172424727,828339131,3990698554,19274402605,93318527436,452731903409,
%U 2200129435723,10709121191503,52203448696454,254795042352594,1245027406344003,6090268253018489,29820535800079680,146141006117111445
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 1, -1), (0, 1, 1), (1, 0, 0), (1, 0, 1)}.
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, -1 + k, -1 + n] + aux[-1 + i, j, k, -1 + n] + aux[i, -1 + j, -1 + k, -1 + n] + aux[1 + i, -1 + j, 1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,2
%A _Manuel Kauers_, Nov 18 2008