login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151055 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 1), (0, 0, 1), (0, 1, 0), (1, 1, 0)}. 0

%I #4 Apr 21 2024 22:25:00

%S 1,3,10,37,146,596,2488,10577,45621,198971,875546,3881695,17319136,

%T 77692349,350149137,1584522530,7196245139,32786815893,149806467269,

%U 686239704863,3150858847011,14497664524101,66834923897889,308656720603898,1427755641162334,6614301325059226,30684435986997431

%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 1), (0, 0, 1), (0, 1, 0), (1, 1, 0)}.

%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.

%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

%K nonn,walk

%O 0,2

%A _Manuel Kauers_, Nov 18 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 16 12:01 EDT 2024. Contains 374348 sequences. (Running on oeis4.)