login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A150738
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, -1), (0, 1, 1), (1, -1, 0), (1, 1, 1)}
0
1, 2, 8, 29, 122, 516, 2275, 10063, 45677, 208078, 958584, 4448577, 20763179, 97353502, 458968421, 2170568128, 10300227976, 49041885644, 234061077183, 1119717374619, 5369342997846, 25793422147098, 124126007981648, 598378689568776, 2888668186797344, 13964059765313748, 67594335510639572
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[i, -1 + j, -1 + k, -1 + n] + aux[1 + i, j, 1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A150735 A150736 A150737 * A150739 A151301 A150740
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved