%I #4 Jan 20 2024 18:12:32
%S 1,2,7,29,129,598,2835,13644,66319,324630,1597025,7885507,39041941,
%T 193699338,962518555,4788722705,23847568557,118848810902,592658978457,
%U 2956802946625,14757301904357,73676132704272,367922865754725,1837709064234518,9180591215488059,45869654339178428,229208480098828445
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 1, 1), (0, 0, 1), (1, -1, 1), (1, 1, -1), (1, 1, 0)}.
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, k, -1 + n] + aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,2
%A _Manuel Kauers_, Nov 18 2008