%I #4 Dec 28 2023 23:57:58
%S 1,2,7,26,106,443,1931,8532,38556,175744,812102,3775043,17708060,
%T 83425112,395532431,1881427225,8991123869,43077291303,207115573368,
%U 997843270871,4820607972067,23327203264218,113127811678434,549380905060311,2672659561398277,13017135794651217,63491735107888927,309988267330122717
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (0, -1, 1), (0, 1, 0), (1, 0, -1), (1, 0, 1)}.
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, -1 + k, -1 + n] + aux[-1 + i, j, 1 + k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[i, 1 + j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,2
%A _Manuel Kauers_, Nov 18 2008