login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A150512
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, -1), (1, -1, 1), (1, 0, 0), (1, 1, 1)}.
0
1, 2, 7, 25, 103, 412, 1749, 7374, 32367, 140540, 624741, 2762807, 12445171, 55767796, 253001603, 1144270531, 5228115697, 23820553506, 109334777759, 500949195171, 2309567903417, 10631593531070, 49173395140653, 227208446268506, 1054121717334059, 4886395101354894, 22724319102224943, 105622404473789363
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[-1 + i, j, k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, j, 1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A221458 A221453 A097597 * A150513 A150514 A150515
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved