login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A150474
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (0, -1, 1), (0, 0, 1), (0, 1, -1), (1, 0, 1)}.
0
1, 2, 7, 25, 99, 405, 1714, 7427, 32737, 146383, 661869, 3020265, 13889929, 64291101, 299260749, 1399700354, 6574435846, 30995358969, 146611032296, 695533590390, 3308404066736, 15774602645911, 75377396802039, 360897351359596, 1731065825672997, 8317002690540882, 40020944485987337, 192852380846196131
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, -1 + k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[i, 1 + j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A150471 A150472 A150473 * A150475 A150476 A150477
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved