login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, -1, 1), (0, 0, -1), (0, 1, 0), (1, 1, 0)}.
0

%I #4 Dec 28 2023 22:55:49

%S 1,2,6,19,65,233,865,3301,12875,51117,205976,840429,3466108,14428533,

%T 60553582,255966778,1088958246,4659451357,20040555293,86601741731,

%U 375841271002,1637517304050,7160331688467,31414117679299,138246342300698,610132138587868,2699915527292424,11977212862937455

%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, -1, 1), (0, 0, -1), (0, 1, 0), (1, 1, 0)}.

%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.

%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[i, j, 1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

%K nonn,walk

%O 0,2

%A _Manuel Kauers_, Nov 18 2008