login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A150030
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 0), (-1, 1, 0), (1, 0, 0), (1, 0, 1)}.
1
1, 2, 6, 16, 62, 209, 826, 2884, 12299, 46495, 197275, 752364, 3328340, 13257631, 58135717, 231929737, 1046257805, 4296230064, 19202622824, 78758167294, 359644608451, 1506796125323, 6819578915478, 28503632171786, 131253674953941, 557875859380520, 2547299431112866, 10794901911340637
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MAPLE
F:= proc(x, y, z, n) option remember; local t, s, u;
t:= 0:
if n <= min(x, y, z) then return 5^n fi;
for s in [[-1, -1, -1], [-1, -1, 0], [-1, 1, 0], [1, 0, 0], [1, 0, 1]] do
u:= [x, y, z]+s;
if min(u) >= 0 then t:= t + procname(op(u), n-1) fi
od;
t
end proc:
seq(F(0, 0, 0, n), n=0..40); # Robert Israel, Jun 28 2018
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, -1 + k, -1 + n] + aux[-1 + i, j, k, -1 + n] + aux[1 + i, -1 + j, k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A033301 A197102 A093113 * A150031 A121753 A173994
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved