login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A149966
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, -1)}.
0
1, 2, 5, 16, 54, 195, 739, 2898, 11665, 47978, 201023, 854393, 3677078, 15998576, 70258094, 311037123, 1386937967, 6224225938, 28091605154, 127435565082, 580796534604, 2658184572048, 12212656631819, 56307236152953, 260450113138421, 1208312330947453, 5621241503362272, 26217963341248498
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A149964 A148399 A149965 * A149967 A148400 A052836
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved