login
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, 0), (1, -1, 1), (1, 0, -1), (1, 1, 1)}.
0

%I #4 Dec 30 2023 23:17:04

%S 1,1,5,17,69,267,1167,4855,21419,92169,413653,1820575,8237365,

%T 36789927,167756317,757342581,3471510325,15797575547,72748645289,

%U 333122881165,1539530130895,7084568397845,32844125083437,151753994554771,705352964589465,3269966289899371,15233634774302207,70822405260256391

%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, 0), (1, -1, 1), (1, 0, -1), (1, 1, 1)}.

%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.

%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[-1 + i, j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

%K nonn,walk

%O 0,3

%A _Manuel Kauers_, Nov 18 2008