Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Dec 30 2023 23:21:31
%S 1,1,5,17,63,253,1033,4255,17935,76417,328111,1422019,6205767,
%T 27220843,120065915,531976191,2365738953,10559780719,47286444233,
%U 212333994419,956041766143,4315020289809,19517499482841,88463974798857,401726989350349,1827449753524945,8326788750143589,37999196458199753
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, 1), (0, -1, 1), (0, 0, -1), (1, 1, 1)}.
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[i, j, 1 + k, -1 + n] + aux[i, 1 + j, -1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008