login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A149583
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, 0), (0, 0, -1), (1, -1, -1), (1, 1, 1)}
1
1, 1, 5, 15, 53, 213, 835, 3295, 13767, 57685, 241077, 1029629, 4454725, 19208365, 83540529, 367533441, 1617265003, 7134065021, 31725845327, 141483149299, 631238921461, 2829861186507, 12734724782627, 57333350858939, 258747925751701, 1171914417315889, 5313618366103365, 24119543507783239
OFFSET
0,3
LINKS
Alin Bostan and Manuel Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2009.
MAPLE
F:= proc(x, y, z, n) option remember; local t, s, u;
t:= 0:
if n <= min(x, y, z) then return 5^n fi;
for s in [[-1, -1, 0], [-1, 0, 0], [0, 0, -1], [1, -1, -1], [1, 1, 1]] do
u:= [x, y, z]+s;
if min(u) >= 0 then t:= t + procname(op(u), n-1) fi
od;
t
end proc:
seq(F(0, 0, 0, n), n=0..40); # Robert Israel, May 14 2018
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[-1 + i, 1 + j, 1 + k, -1 + n] + aux[i, j, 1 + k, -1 + n] + aux[1 + i, j, k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A335025 A149581 A149582 * A149584 A147324 A109245
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved