Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Jan 20 2024 15:00:20
%S 1,1,4,13,44,150,548,1979,7324,27074,101620,381338,1444860,5478476,
%T 20902380,79824913,306175148,1175699494,4528970884,17465198198,
%U 67512268620,261240684772,1012744843508,3929870352586,15272109227396,59401882159868,231326540050700,901564182638872,3517261162906916
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (1, -1, 0), (1, 0, -1), (1, 1, 1)}.
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[-1 + i, j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008