login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A149057
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 1, 1), (0, 1, 1), (1, -1, 1), (1, 1, -1)}.
1
1, 1, 3, 10, 41, 158, 703, 2966, 13622, 60295, 282385, 1285337, 6097884, 28283284, 135373026, 636175260, 3064466767, 14540133618, 70377730620, 336373997612, 1634218219670, 7855462500604, 38278123228839, 184836490256889, 902854275332470, 4375843959459194, 21417210557620449, 104120226745428208
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MAPLE
Steps:= [[-1, -1, 0], [-1, 1, 1], [0, 1, 1], [1, -1, 1], [1, 1, -1] ]:
f:= proc(n, p) option remember;
if n <= min(p) then return 5^n fi;
add(procname(n-1, t), t=remove(has, map(`+`, Steps, p), -1));
end proc:
map(f, [$0..30], [0, 0, 0]); # Robert Israel, Dec 12 2019
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[i, -1 + j, -1 + k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A213108 A163843 A149056 * A149058 A151078 A151079
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved