%I #4 Jan 20 2024 14:18:08
%S 1,1,3,10,38,137,577,2291,10009,41841,187031,811230,3684936,16361745,
%T 75298511,339975656,1580274100,7227506775,33851197613,156428458866,
%U 737098177726,3434650018173,16265977455513,76309112087123,362941630929479,1712255140064679,8173745196625151,38744780527451802
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 1, 0), (0, 1, 1), (1, -1, 0), (1, 1, -1)}.
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[i, -1 + j, -1 + k, -1 + n] + aux[1 + i, -1 + j, k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008