login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A148923
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, 0), (0, 1, -1), (1, -1, 0), (1, 0, 1)}.
0
1, 1, 3, 9, 26, 93, 324, 1166, 4460, 16830, 65812, 262065, 1040722, 4238726, 17350012, 71315206, 297591380, 1243539526, 5233329983, 22203852930, 94322737558, 403548101523, 1733652513826, 7463646912894, 32316923611738, 140233760147741, 610278764472958, 2666623865283691, 11669459164166677
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, -1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[1 + i, j, k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A196952 A148921 A148922 * A058143 A126025 A317497
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved