OFFSET
0,3
COMMENTS
Also, number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, 1), (0, -1), (0, 1), (1, 1)}.
LINKS
A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2008.
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, ArXiv 0810.4387 [math.CO], 2008.
FORMULA
G.f.: (Int((4*x^2+2*x-1)*(1/4+Int(x*((1-4*x)*(1-x)*hypergeom([1/2, 3/2],[2],16*x^2/(1+4*x^2))-x*(1-16*x+24*x^2+16*x^3)*hypergeom([1/2, 1/2],[2],16*x^2/(1+4*x^2)))/((1-4*x)^(1/2)*(1+4*x^2)^(1/2)*(4*x^2+2*x-1)^2),x))/((1-4*x)^(1/2)*x^2),x)-1/(4*x)-x)/((x-1)*x). - Mark van Hoeij, Aug 27 2014
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, -1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
EXTENSIONS
Edited by N. J. A. Sloane, Nov 28 2008 at the suggestion of R. J. Mathar
STATUS
approved