The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A148647 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 1), (-1, 1, 0), (1, 0, 0), (1, 1, -1)}. 0
1, 1, 3, 6, 23, 62, 263, 815, 3641, 12300, 56667, 202971, 954066, 3564277, 16985607, 65498160, 315209452, 1245818035, 6039009631, 24343527621, 118650810900, 486056238279, 2379084219687, 9877543772753, 48508370650463, 203692718352749, 1002991082498646, 4252712706392436, 20985613117596447 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2008.
MAPLE
N:= 30: # to get a(0) to a(N)
steps:= [[-1, -1, 1], [-1, 0, 1], [-1, 1, 0], [1, 0, 0], [1, 1, -1]]:
P[0]:= {[0, 0, 0]}:
A[0]:= 1:
B[0, [0, 0, 0]]:= 1:
for n from 1 to N do
A[n]:= 0:
P[n]:= {}:
for p in P[n-1] do
for s in steps do
pp:= p + s;
if min(pp) < 0 then next fi;
P[n]:= P[n] union {pp};
A[n]:= A[n] + B[n-1, p];
if assigned(B[n, pp]) then B[n, pp]:= B[n, pp] + B[n-1, p]
else B[n, pp]:= B[n-1, p]
fi;
od
od
od:
seq(A[n], n=0..N); # Robert Israel, Nov 03 2014
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, k, -1 + n] + aux[1 + i, -1 + j, k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A148644 A148645 A148646 * A148648 A013213 A013217
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 05:55 EDT 2024. Contains 373402 sequences. (Running on oeis4.)