The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A148647 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 1), (-1, 1, 0), (1, 0, 0), (1, 1, -1)}. 0
 1, 1, 3, 6, 23, 62, 263, 815, 3641, 12300, 56667, 202971, 954066, 3564277, 16985607, 65498160, 315209452, 1245818035, 6039009631, 24343527621, 118650810900, 486056238279, 2379084219687, 9877543772753, 48508370650463, 203692718352749, 1002991082498646, 4252712706392436, 20985613117596447 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..28. A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2008. MAPLE N:= 30: # to get a(0) to a(N) steps:= [[-1, -1, 1], [-1, 0, 1], [-1, 1, 0], [1, 0, 0], [1, 1, -1]]: P[0]:= {[0, 0, 0]}: A[0]:= 1: B[0, [0, 0, 0]]:= 1: for n from 1 to N do A[n]:= 0: P[n]:= {}: for p in P[n-1] do for s in steps do pp:= p + s; if min(pp) < 0 then next fi; P[n]:= P[n] union {pp}; A[n]:= A[n] + B[n-1, p]; if assigned(B[n, pp]) then B[n, pp]:= B[n, pp] + B[n-1, p] else B[n, pp]:= B[n-1, p] fi; od od od: seq(A[n], n=0..N); # Robert Israel, Nov 03 2014 MATHEMATICA aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, k, -1 + n] + aux[1 + i, -1 + j, k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}] CROSSREFS Sequence in context: A148644 A148645 A148646 * A148648 A013213 A013217 Adjacent sequences: A148644 A148645 A148646 * A148648 A148649 A148650 KEYWORD nonn,walk AUTHOR Manuel Kauers, Nov 18 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 05:55 EDT 2024. Contains 373402 sequences. (Running on oeis4.)