login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A148625
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 1), (0, 1, -1), (0, 1, 1), (1, 0, -1)}.
0
1, 1, 3, 6, 22, 54, 212, 601, 2419, 7391, 30803, 98465, 417611, 1395410, 5971378, 20544578, 89140376, 313095273, 1369580635, 4915365432, 21606796900, 78780031560, 348839361590, 1287433990354, 5727956844064, 21411645040075, 95567296894415, 360823463864898, 1617709647340616, 6157502753266494
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, 1 + k, -1 + n] + aux[i, -1 + j, -1 + k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A325158 A079514 A148624 * A148626 A148627 A148628
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved