login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A148553
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 1), (-1, 1, -1), (-1, 1, 1), (1, 0, 0)}.
0
1, 1, 3, 5, 21, 44, 194, 447, 2101, 5180, 24492, 62732, 303517, 802983, 3894196, 10523303, 51582319, 142052662, 697150478, 1946133690, 9605129559, 27147409827, 134087618348, 382585252981, 1895835911906, 5456749854589, 27054343319734, 78417093591497, 389562170008281, 1136501511112256, 5648169255263212
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, -1 + j, 1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A148550 A148551 A148552 * A239795 A261272 A319488
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved