login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A148402
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 1, -1), (0, 1, 0), (1, -1, 1), (1, 1, -1)}.
0
1, 1, 2, 5, 17, 49, 181, 597, 2331, 8307, 33727, 126173, 525336, 2036773, 8631777, 34389299, 147778912, 601289599, 2612887714, 10812163555, 47409130369, 198919256443, 878738363940, 3729985307049, 16581722397367, 71078261588869, 317695865445421, 1373325684950755, 6167171656333429
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[1 + i, -1 + j, 1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A376967 A368756 A148401 * A148403 A148404 A061675
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved