login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 1), (1, 0, -1), (1, 0, 0), (1, 1, -1)}.
0

%I #4 Jan 01 2024 00:47:08

%S 1,1,2,5,15,44,154,514,1949,7100,28289,109269,450989,1814897,7692208,

%T 31909424,138042852,586240058,2577374384,11152156893,49670880217,

%U 218216089703,982348019505,4370272299508,19850169852979,89244498210728,408439137023100,1852782584365454,8534857228606366

%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 1), (1, 0, -1), (1, 0, 0), (1, 1, -1)}.

%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.

%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, k, -1 + n] + aux[-1 + i, j, 1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

%K nonn,walk

%O 0,3

%A _Manuel Kauers_, Nov 18 2008