Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Dec 27 2023 00:00:31
%S 1,1,2,5,14,40,120,375,1212,3976,13262,44928,154484,536046,1876504,
%T 6623171,23568612,84362580,303647530,1098556826,3994948648,
%U 14586549832,53462105550,196642390104,725847534220,2687112563572,9975411747458,37128042125870,138546640163748,518147055726962,1941898830982032
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (0, -1, 0), (0, 0, 1), (1, 1, -1)}.
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[i, 1 + j, k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008