login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A148231
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 1, 1), (1, 0, -1), (1, 0, 0)}.
0
1, 1, 2, 4, 13, 34, 110, 307, 1080, 3307, 11710, 36855, 134684, 442897, 1626174, 5433787, 20284552, 69513936, 260291202, 901425383, 3410246640, 12005552193, 45512621254, 161416166078, 616236497726, 2210889319532, 8452854188398, 30493752768700, 117182464381489, 426363182888338, 1640232698911225
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, k, -1 + n] + aux[-1 + i, j, 1 + k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A148229 A148230 A227808 * A148232 A148233 A148234
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved