Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Dec 28 2023 19:55:05
%S 1,1,2,4,10,27,79,242,770,2526,8482,29081,101381,358448,1282833,
%T 4638642,16923338,62222809,230338989,857789608,3211367100,12079381400,
%U 45627168971,172996707877,658150503220,2511554427265,9610919774235,36870810085355,141774779218300,546295776440781,2109079351378737
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 1), (0, 1, -1), (1, -1, 1), (1, 0, 0)}.
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008