login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A148048
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, -1), (0, 1, 1), (1, -1, -1)}.
0
1, 1, 2, 3, 10, 20, 58, 139, 438, 1140, 3258, 9772, 28562, 85882, 251866, 805191, 2408942, 7397564, 23342986, 72959148, 230591190, 716489490, 2346086618, 7379407456, 23549213138, 76289251170, 246337916414, 799728360510, 2563657338846, 8524590676290, 27557309877842, 89945529675023, 296436681030158
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, 1 + j, 1 + k, -1 + n] + aux[i, -1 + j, -1 + k, -1 + n] + aux[1 + i, j, 1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A148045 A148046 A148047 * A148049 A148050 A148051
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved