Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Apr 14 2020 03:31:17
%S 1,1,1,3,5,8,12,21,30,50,75,110,169,249,361,539,757,1076,1583,2207,
%T 3121,4415,6184,8468,11775,16274,22314,30601,41745,56412,77008,103507,
%U 138383,186928,249855,333375,443898,588402,778276,1031126,1356945,1780645
%N Expansion of Product_{k > 0} (1 + A005229(k)*x^k).
%H Andrew Howroyd, <a href="/A147880/b147880.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: Product_{k > 0} (1 + A005229(k)*x^k).
%F a(n) = Sum_{(b_1,...,b_n)} f(1)^b_1 * f(2)^b_2 * ... * f(n)^b_n, where f(m) = A005229(m), and the sum is taken over all lists (b_1,...,b_n) with b_j in {0,1} and Sum_{j=1..n} j*b_j = n.
%e From _Petros Hadjicostas_, Apr 10 2020: (Start)
%e Let f(m) = A005229(m). Using the strict partitions of each n (see A000009), we get
%e a(1) = f(1) = 1,
%e a(2) = f(2) = 1,
%e a(3) = f(3) + f(1)*f(2) = 2 + 1*1 = 3,
%e a(4) = f(4) + f(1)*f(3) = 3 + 1*2 = 5,
%e a(5) = f(5) + f(1)*f(4) + f(2)*f(3) = 3 + 1*3 + 1*2 = 8,
%e a(6) = f(6) + f(1)*f(5) + f(2)*f(4) + f(1)*f(2)*f(3) = 4 + 1*3 + 1*3 + 1*1*2 = 12,
%e a(7) = f(7) + f(1)*f(6) + f(2)*f(5) + f(3)*f(4) + f(1)*f(2)*f(4) = 5 + 1*4 + 1*3 + 2*3 + 1*1*3 = 21. (End)
%t (*A005229*) f[n_Integer?Positive] := f[n] = f[ f[n - 2]] + f[n - f[n - 2]]; f[0] = 0; f[1] = f[2] = 1;
%t P[x_, n_] := P[x, n] = Product[1 + f[m] *x^m, {m, 0, n}];
%t Take[CoefficientList[P[x, 45], x], 45] (* Program simplified by _Petros Hadjicostas_, Apr 13 2020 *)
%o (PARI) \\ here B(n) is A005229 as vector.
%o B(n)={my(a=vector(n, i, 1)); for(n=3, n, a[n] = a[a[n-2]] + a[n-a[n-2]]); a}
%o seq(n)={my(v=B(n)); Vec(prod(k=1, n, 1 + v[k]*x^k + O(x*x^n)))} \\ _Andrew Howroyd_, Apr 10 2020
%Y Cf. A000009, A004001, A005229, A147559, A147654, A147655, A147665.
%K nonn
%O 0,4
%A _Roger L. Bagula_, Nov 16 2008
%E Various sections edited by _Joerg Arndt_ and _Petros Hadjicostas_, Apr 10 2020