Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Oct 16 2024 21:25:51
%S 2,3,3,3,3,5,11,17,23,7,-1,-9,-17,-25,11,21,31,41,51,61,13,1,-11,-23,
%T -35,-47,-59,17,31,45,59,73,87,101,115,19,35,51,67,83,99,115,131,147,
%U 23,-13,-49,-85,-121,-157,-193,-229,-265,-301,29,69,109,149,189,229,269
%N Triangle t(n, k) = k*n*(prime(n+2) - 2*prime(n+1) + prime(n)) + prime(n), 0 <= k <= n = 1, 2, 3, ...
%F t(n, k) = k*n*A036263(n) + A000040(n). - _M. F. Hasler_, Oct 15 2024
%e {2, 3},
%e {3, 3, 3},
%e {5, 11, 17, 23},
%e {7, -1, -9, -17, -25},
%e {11, 21, 31, 41, 51, 61},
%e {13, 1, -11, -23, -35, -47, -59},
%e {17, 31, 45, 59, 73, 87, 101, 115},
%e {19, 35, 51, 67, 83, 99, 115,131, 147},
%e {23, -13, -49, -85, -121, -157, -193, -229, -265, -301},
%e {29, 69, 109, 149, 189, 229, 269, 309, 349, 389, 429},
%e ...
%o (PARI) A147815(n,k)=k*n*(prime(n) - 2*prime(n+1) + prime(n+2)) + prime(n)
%o [[A147815(n,k) | k<-[0..n]] | n<-[1..9]]
%Y Cf. A036263 (2nd differences of primes).
%K sign,tabf,less
%O 1,1
%A _Roger L. Bagula_, Nov 13 2008
%E Edited by _M. F. Hasler_, Oct 15 2024