login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(2*(3/2)^n).
3

%I #20 Nov 02 2024 15:34:49

%S 2,3,4,6,10,15,22,34,51,76,115,172,259,389,583,875,1313,1970,2955,

%T 4433,6650,9975,14963,22445,33668,50502,75753,113630,170445,255668,

%U 383502,575253,862879,1294319,1941479,2912219,4368328,6552493,9828739,14743109

%N a(n) = floor(2*(3/2)^n).

%C Different from the sequence defined by the recursion a(1) = 3, a(n) = floor(a(n-1)*3/2) for n > 1, which gives a(2) = 4, a(3) = 6, a(4) = 9, a(5) = 13, ... (cf. A061418). - _Klaus Brockhaus_, Nov 16 2008

%e a(4) = floor(2*(3/2)^4) = floor(81/8) = floor(10+1/8) = 10. - _Klaus Brockhaus_, Nov 16 2008

%t lst={};s=2;Do[s=s*1.5;AppendTo[lst,Floor[s]],{n,1,5!}];lst

%t Floor[2 (3/2)^Range[0,40]] (* _Harvey P. Dale_, Aug 28 2019 *)

%o (Magma) [ Floor(2*(3/2)^n):n in [1..39] ]; // _Klaus Brockhaus_, Nov 16 2008

%o (Python)

%o def A147788(n): return 3**n>>n-1 if n else 2 # _Chai Wah Wu_, Sep 21 2022

%Y Cf. A061418, A147789, A147790.

%K nonn

%O 0,1

%A _Vladimir Joseph Stephan Orlovsky_, Nov 13 2008

%E Definition clarified by _R. J. Mathar_, Nov 14 2008

%E Edited by _N. J. A. Sloane_, Nov 18 2008