Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Feb 08 2022 23:26:23
%S 1,3,2,-3,-4,3,6,-3,-8,3,10,-3,-12,3,14,-3,-16,3,18,-3,-20,3,22,-3,
%T -24,3,26,-3,-28,3,30,-3,-32,3,34,-3,-36,3,38,-3,-40,3,42,-3,-44,3,46,
%U -3,-48,3,50,-3,-52,3,54,-3,-56,3,58,-3,-60,3,62,-3,-64
%N (1, 2, -4, 6, -8, ...) interleaved with (3, -3, 3, -3, 3, ...).
%C POLYMOTZKINT A147657 = [1,2,3,...].
%C POLYMOTZKINTINV operation on [1,3,5,7,...], such that POLYMOTZKINT A147658 = [1,3,5,7,...].
%C Cf. A005717 for an example of the POLYMOTZKINT operation.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,-2,0,-1).
%F a(1) = 1; a(2*k) = (-1)^(k-1)*3; a(2*k+1) = (-1)^(k-1)*2*k for k >= 1. - _Georg Fischer_, Nov 02 2021
%p with(ListTools): Flatten([1, seq([(-1)^(k-1)*3, (-1)^(k-1)*2*k], k=1..32)]); # _Georg Fischer_, Nov 02 2021
%Y Cf. A005717, A147657.
%K easy,sign
%O 1,2
%A _Gary W. Adamson_, Nov 09 2008
%E a(25) ff. corrected by _Georg Fischer_, Nov 02 2021