Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Dec 13 2022 05:44:30
%S 1,2,1,-2,-2,2,3,-2,-4,2,5,-2,-6,2,7,-2,-8,2,9,-2,-10,2,11,-2,-12,2,
%T 13,-2,-14,2,15,-2,-16,2,17,-2,-18,2,19,-2,-20,2,21,-2,-22,2,23,-2,
%U -24,2,25,-2,-26,2,27,-2,-28,2,29,-2,-30,2,31,-2,-32,2,33
%N a(1)=1, a(2)=2, thereafter (1, -2, 3, -4, 5, -6, ...) interleaved with (-2, 2, -2, 2, ...).
%C Equals POLYMOTZKINTINV [1,2,3,...], such that POLYMOTZKINT A147657 = [1,2,3,...]. A comment accompanying the POLYMOTZKINT operation may be found in A005717.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,-2,0,-1).
%F (1, -2, 3, -4, 5,...) interleaved with (1, 2, -2, 2,...) such that the first subsequence starts after the first "2" in the second subsequence.
%F G.f.: x + x^2*(2+x+2*x^2)/(1+x^2)^2. - _R. J. Mathar_, Dec 13 2022
%t Join[{1,2}, LinearRecurrence[{0, -2, 0, -1}, {1, -2, -2, 2}, 65]] (* _Georg Fischer_, Nov 02 2021 *)
%Y Cf. A005717, A147658.
%K easy,sign
%O 1,2
%A _Gary W. Adamson_, Nov 09 2008
%E Definition and a(28) ff. corrected by _Georg Fischer_, Nov 02 2021