This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147614 a(n) = number of grid points that are covered after n-th stage of A139250, assuming the toothpicks have length 2. 15

%I

%S 0,3,7,13,19,27,39,53,63,71,83,99,119,147,183,217,235,243,255,271,291,

%T 319,355,391,419,447,487,539,607,699,803,885,919,927,939,955,975,1003,

%U 1039,1075,1103,1131,1171,1223,1291,1383,1487,1571,1615

%N a(n) = number of grid points that are covered after n-th stage of A139250, assuming the toothpicks have length 2.

%C a(n) is also the number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton whose virtual skeleton is a polyedge as the toothpick structure of A139250. [From _Omar E. Pol_, May 18 2009]

%C It appears that the number of grid points that are covered after n-th stage of A139250, assuming the toothpicks have length 2*k, is equal to (2*k-2) * A139250(n) + a(n), k>0. See formulas in A160420 and A160422. [From _Omar E. Pol_, Nov 15 2010]

%C More generally, it appears that a(n) is also the number of grid points that are covered by the "special points" of the toothpicks of A139250, after n-th stage, assuming the toothpicks have length 2*k, k>0 and that each toothpick has three special points: the midpoint and two endpoints.

%C Note that if k>1 then also there are 2*k-2 grid points that are covered by each toothpick, but these points are not considered for this sequence. [From _Omar E. Pol_, Nov 15 2010]

%C Contribution from _Omar E. Pol_, Sep 16 2012 (Start):

%C It appears that a(n)/A139250(n) converge to 4/3.

%C It appears that a(n)/A160124(n) converge to 2.

%C It appears that a(n)/A139252(n) converge to 4.

%C (End)

%H David Applegate, <a href="/A147614/b147614.txt">Table of n, a(n) for n = 0..10135</a>

%H David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="http://neilsloane.com/doc/tooth.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>

%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>

%F Since A160124(n) = 1+2*A139250(n)-A147614(n), n>0 (see A160124), and we have recurrences for A160125 (hence A160124) and A139250, we have a recurrence for this sequence. - _N. J. A. Sloane_, Feb 02 2010

%F a(n) = A187220(n+1)-A160124(n), n>0. - _Omar E. Pol_, Feb 15 2013

%Y Cf. A139250, A139251, A139252, A160124, A160420, A160422, A170884.

%K nonn,look

%O 0,2

%A _David Applegate_, Apr 29 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.