login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers with exactly 5 distinct prime divisors {2,3,5,7,11}.
7

%I #21 Sep 18 2024 05:53:48

%S 2310,4620,6930,9240,11550,13860,16170,18480,20790,23100,25410,27720,

%T 32340,34650,36960,41580,46200,48510,50820,55440,57750,62370,64680,

%U 69300,73920,76230,80850,83160,92400,97020,101640,103950,110880,113190,115500,124740,127050

%N Numbers with exactly 5 distinct prime divisors {2,3,5,7,11}.

%C Successive numbers k such that EulerPhi(x)/x = m:

%C ( Family of sequences for successive n primes )

%C m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079

%C m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845

%C m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207

%C m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571

%C m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572

%C m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573

%C m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574

%C m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575

%H Amiram Eldar, <a href="/A147572/b147572.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = 2310 * A051038(n). - _Amiram Eldar_, Mar 10 2020

%F Sum_{n>=1} 1/a(n) = 1/480. - _Amiram Eldar_, Nov 12 2020

%t a = {}; Do[If[EulerPhi[x]/x == 16/77, AppendTo[a, x]], {x, 1, 100000}]; a

%t Select[Range[130000],FactorInteger[#][[All,1]]=={2,3,5,7,11}&] (* _Harvey P. Dale_, Oct 04 2020 *)

%o (Python)

%o from sympy import integer_log, prevprime

%o def A147572(n):

%o def bisection(f,kmin=0,kmax=1):

%o while f(kmax) > kmax: kmax <<= 1

%o while kmax-kmin > 1:

%o kmid = kmax+kmin>>1

%o if f(kmid) <= kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o return kmax

%o def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))

%o def f(x): return n+x-g(x,11)

%o return 2310*bisection(f,n,n) # _Chai Wah Wu_, Sep 16 2024

%Y Cf. A051038, A060735, A143207, A147571-A147575, A147576-A147580.

%K nonn

%O 1,1

%A _Artur Jasinski_, Nov 07 2008

%E More terms from _Amiram Eldar_, Mar 10 2020