Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Aug 06 2019 06:16:50
%S 2,6,6,10,30,42,14,6,30,66,66,78,182,210,30,34,102,114,190,210,462,
%T 322,138,30,130,30,42,174,870,186,30,66,510,210,210,222,1254,546,390,
%U 246,1722,258,946,330,690,1410,282,42,70,510,390,742,210,330,770,570,1218
%N Minimum of rad(m (n - m) n) for 0 < m < n, gcd(m,n) = 1, where rad(k) = A007947(k) = product of prime factors of k.
%C Function rad(k) is used in ABC conjecture applications.
%C For biggest values of function rad(m n (n - m)) see A147299.
%C For numbers m for which rad(m n (n - m)) reached minimal value see A147300.
%C For numbers m for which rad(m n (n - m)) reached maximal value see A147301.
%C Sequence in each value Log[n]/Log[A147298(n)] reached records see A147297.
%H Ivan Neretin, <a href="/A147298/b147298.txt">Table of n, a(n) for n = 2..1000</a>
%p A147298 := proc(n) local rad, g, L;
%p rad := n -> mul(k, k in numtheory:-factorset(n)):
%p g := (n, k) -> `if`(igcd(n, k) = 1, 1, infinity):
%p L := n -> [seq(g(n,k)*rad(n*k*(n-k)), k=1..n/2)]:
%p min(L(n)) end: seq(A147298(n), n=2..58); # _Peter Luschny_, Aug 06 2019
%t logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; gg \ = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; AppendTo[bb, max]; AppendTo[cc, mmax]; AppendTo[dd, mmin]; AppendTo[gg, ile]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 129}]; aa (*Artur Jasinski*)
%t Table[Min[Times @@ FactorInteger[#][[All, 1]] & /@ ((m = Select[Range[1, n - 1], GCD[n, #] == 1 &])*(n - m)*n)], {n, 2, 58}] (* _Ivan Neretin_, May 21 2015 *)
%o (PARI) A147298(n)= local(m=n^2); for( a=1,n\2, gcd(a,n)>1 && next; A007947(n-a)*A007947(a)<m || next; m=A007947(n-a)*A007947(a)); m*A007947(n)
%Y Cf. A007947, A085152, A085153, A147298-A147307.
%K nonn
%O 2,1
%A _Artur Jasinski_, Nov 05 2008