login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A146961
Numbers k = p*q*r, with odd primes p < q < r, such that Sister Beiter's cyclotomic coefficient conjecture is false.
1
20213, 125609, 136477, 141317, 150271, 198493, 199177, 212971, 239039, 273229, 282367, 291343, 311201, 332777, 373901, 393313, 398563, 412357, 442091, 449527, 449647, 450131, 456569, 461263, 469249, 470741, 475057, 522461, 524837, 532363
OFFSET
1,1
COMMENTS
In 1968, Sister Beiter conjectured that for k = p*q*r, with odd primes p < q < r, the maximum coefficient (in absolute value) of the cyclotomic polynomial Phi(k,x) is <= (p+1)/2. Up to 10^6, all counterexamples have p > 7. Gallot and Moree prove the conjecture is false for p > 7.
LINKS
A. S. Bang, Om Ligningen phi_n(x) = 0, Nyt tidsskrift for matematik, Vol. 6, Afdeling B (1895), pp. 6-12 (7 pages).
Yves Gallot and Pieter Moree, Counter-examples to Sister Beiter's cyclotomic coefficient conjecture, MPIM Preprint Series 2007 (141).
Nathan Kaplan, Flat cyclotomic polynomials of order three, Journal of Number Theory, Volume 127, Issue 1, November 2007, Pages 118-126.
G. S. Kazandzidis, On the cyclotomic polynomial: Coefficients, Bull. Soc. Math. Gr`ece (N.S.) 4 (1963), no. 1, 1-11.
Carlo Sanna, A Survey on Coefficients of Cyclotomic Polynomials, arXiv:2111.04034 [math.NT], 2021.
Wikipedia, Marion Beiter.
PROG
(PARI) isok(m) = if ((m%2) && (bigomega(m)==3) && (omega(m)==3), my(p=vecmin(factor(m)[, 1])); vecmax(apply(abs, Vec(polcyclo(m)))) > (p+1)/2; ); \\ Michel Marcus, Jan 16 2023
(Sage)
from sage.rings.polynomial.cyclotomic import cyclotomic_coeffs
for n in range(3, 100000, 2):
pqr = Integer(n).prime_factors()
if (len(pqr) == 3) and (product(pqr) == n):
coeffs = cyclotomic_coeffs(n, sparse=False)
max_coeff = max(abs(c) for c in coeffs)
if (max_coeff > (pqr[0]+1)//2): print(n) # Robin Visser, Aug 17 2023
CROSSREFS
Subsequence of A046389.
Sequence in context: A295014 A133527 A295011 * A295013 A295000 A250451
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 03 2008
STATUS
approved