login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to 0 or 6 mod 10.
4

%I #45 Sep 15 2022 02:21:09

%S 0,6,10,16,20,26,30,36,40,46,50,56,60,66,70,76,80,86,90,96,100,106,

%T 110,116,120,126,130,136,140,146,150,156,160,166,170,176,180,186,190,

%U 196,200,206,210,216,220,226,230,236,240,246,250,256,260,266,270,276,280

%N Numbers that are congruent to 0 or 6 mod 10.

%C Rank of terms of A061047 ending in with 0.

%H Vincenzo Librandi, <a href="/A146951/b146951.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=6 and b(k) = 5*2^k = A020714(k) for k > 0. - _Philippe Deléham_, Oct 18 2011

%F From _Colin Barker_, May 15 2012: (Start)

%F a(n) = 1/2 - (-1)^n/2 + 5*n.

%F a(n) = a(n-1) + a(n-2) - a(n-3).

%F G.f.: x*(6+4*x)/((1-x)^2*(1+x)). (End)

%F E.g.f.: 5*x*exp(x) + sinh(x). - _Stefano Spezia_, May 14 2021

%F Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/8 - sqrt(1-2/sqrt(5))*Pi/20 - log(phi)/(4*sqrt(5)), where phi is the golden ratio (A001622). - _Amiram Eldar_, Sep 15 2022

%t CoefficientList[Series[x*(6+4*x)/((1-x)^2*(1+x)),{x,0,50}],x] (* _Vincenzo Librandi_, May 18 2012 *)

%o (Magma) I:=[0, 6, 10]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..50]]; // _Vincenzo Librandi_, May 18 2012

%Y Cf. A001622, A020714, A030308, A061047.

%K nonn,easy

%O 0,2

%A _Paul Curtz_, Nov 03 2008

%E Replaced definition by a comment from _Philippe Deléham_, Oct 18 2011. Afer the change this becomes a list, but it is better to keep the offset as 0. - _N. J. A. Sloane_, Sep 08 2022