login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number k such that 2^(2k+1) - 1 = A000668(n+1).
5

%I #54 Apr 03 2023 10:36:11

%S 1,2,3,6,8,9,15,30,44,53,63,260,303,639,1101,1140,1608,2126,2211,4844,

%T 4970,5606,9968,10850,11604,22248,43121,55251,66024,108045,378419,

%U 429716,628893,699134,1488110,1510688,3486296,6733458,10498005,12018291,12982475,15201228

%N Number k such that 2^(2k+1) - 1 = A000668(n+1).

%C The least common multiple of an even superperfect number greater than 2 and its arithmetic derivative divided by the number itself, i.e., lcm(A061652(i), A061652(i)')/A061652(i). - _Giorgio Balzarotti_, Apr 21 2011

%H Amiram Eldar, <a href="/A146768/b146768.txt">Table of n, a(n) for n = 1..46</a>

%H C. K. Caldwell, <a href="https://t5k.org/top20/page.php?id=4">Top 20 Mersenne primes</a>

%H Bernhard Helmes, <a href="http://devalco.de/quadr_Sieb_2x%5E2-1.php">Prime generator f(n)=2n^2-1</a>

%H George Woltman, <a href="http://www.mersenne.org/default.php">Great Internet Mersenne Prime Search</a>

%F a(n) = (A000043(n+1) - 1)/2.

%F 2^(2*a(n) + 1) - 1 = A000668(n+1). - _M. F. Hasler_, Jan 27 2020

%t (MersennePrimeExponent[Range[2, 47]] - 1)/2 (* _Amiram Eldar_, Mar 29 2020 *)

%Y Cf. A000043, A000668, A061652.

%K nonn

%O 1,2

%A _Artur Jasinski_, Nov 02 2008

%E Term for the 39th Mersenne prime added by _Roderick MacPhee_, Oct 05 2009

%E Formula and edits from _Charles R Greathouse IV_, Aug 14 2010

%E Updated to include 40th Mersenne prime by _Michael B. Porter_, Nov 26 2010

%E a(40)-a(42) from _Amiram Eldar_, Mar 29 2020