login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Last prime subtrahend at 10^n in A146757.
2

%I #8 May 04 2019 21:08:07

%S 7,97,983,9941,99839,999983,9998239,99999989,999950881,9999999929,

%T 99999999833,999999999989,9999999999863,99999999999971,

%U 999999961946087,9999999999999917,99999999989350667,999999999999999989

%N Last prime subtrahend at 10^n in A146757.

%e A(2)=97 because 97 is the 15th and last prime difference under 10^2.

%p A146758 := proc(n) local p: p:=10^n: do p:=prevprime(p): if(isprime(ceil(evalf(sqrt(p)))^2-p))then return p: fi: od: end: seq(A146758(n),n=1..14); # _Nathaniel Johnston_, Oct 01 2011

%o (UBASIC) 10 'sq less pr are prime 20 N=1:O=1:C=1 30 A=3:S=sqrt(N):if N>10^3 then print N,C-1:stop 40 B=N\A 50 if B*A=N then 100 60 A=A+2 70 if A<=S then 40 80 R=O^2:Q=R-N 90 if N<R and N=prmdiv(N) and Q=prmdiv(Q) then if Q>1 print R;N;Q;C:N=N+2:C=C+1:goto 30 100 N=N+2:if N<R then 30:else O=O+1:goto 80

%Y Cf. A146757, A146759, A146760.

%K more,nonn

%O 1,1

%A _Enoch Haga_, Nov 02 2008

%E a(8)-a(18) from _Nathaniel Johnston_, Oct 01 2011